Abstract

Long-term potentiation (LTP) is a key element of synaptic plasticity. At the macroscopic level, similar effects can be induced in the human brain using repetitive stimulation with identical stimuli. High-frequency stimulation (HFS) can increase neuronal responses whereas low-frequency stimulation may produce the opposite effect. Optimal stimulation frequencies and characteristics for inducing stimulus-specific response modification (SRM) differ substantially from those applied to brain tissue slices but have been explored in recent studies. In contrast, the individual manifestation of this effect in terms of its spatial location and extent are unclear. Using functional magnetic resonance imaging (fMRI) in 18 subjects (mean age 25.3 years), we attempted to induce LTP-like effects by HFS with checkerboard flashes at 9 Hz for 120 s. As expected, flashes induced strong activation in primary and secondary visual cortices. Contrary to our expectations, we found clusters of decreased activations induced by pattern flashes after HFS in the primary and secondary visual cortices. On the level of the individual subject, some showed significantly increased activations in the post-HFS session while the majority showed significant decreases. The locations of areas showing altered activations before and after HFS were only partly overlapping. No association between location, extent and direction of the HFS-effect was observed. The findings are unexpected in the light of existing HFS-studies, but mirror the high inter-subject variability, concerning even the directionality of the induced effects shown for other indices of LTP-like plasticity in the human brain. As this variability is not observed in LTP at the cellular level, a better understanding of LTP-like mechanisms on the macroscopic level is essential for establishing tools to quantify individual synaptic plasticity in-vivo.

Highlights

  • The brain’s ability to adapt is referred to as neuronal plasticity

  • We focused on decreases during the pre- and post-High-frequency stimulation (HFS) sessions, as this was reported in a previous EEG study (Teyler et al, 2005), increases are reported for completeness

  • The inverse contrast revealed a significantly stronger response to the flashes in the pre-HFS compared to the post-HFS session

Read more

Summary

Introduction

Synaptic long-term potentiation (LTP) is among the best understood molecular mechanisms underlying neuronal plasticity. It is characterized by a long-term increase of synaptic transmission following repetitive stimulation. LTP can be induced by tetanic stimulation at high frequencies, or by associative preand postsynaptic stimulation (Cooke and Bliss, 2006). LTP is complemented by a mechanism called long-term depression (LTD) which reduces synaptic efficacy. Tetanic stimulation at relatively high frequencies (>30 Hz) induces LTP, whereas trains of stimulation at low frequencies (

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call