Abstract

Neurons often contain, and probably release, more than one neuroactive substance that may have diverse or opposite actions on the postsynaptic cell. It remains unexplained how these neurons utilize their multiple neuroactive substances while maintaining appropriate resolution of neurotransmitter functions. Here, we have examined the ultrastructural localization of glycine receptors by using a monoclonal antibody directed to the intracellular domain of the strychnine-sensitive glycine receptor. We have found that glycine receptors are only localized to 56% of the synapses made by presumed 'glycinergic' (more accurately, glycine-utilizing) amacrine cells in the turtle retina. The remaining synapses made by these same boutons show no evidence of glycine receptors. As there is no evidence to suggest the presence of a second type of glycine receptor, these data indicate that only a portion of the postsynaptic sites contacted by the glycine-utilizing neurons can respond to glycine. They also suggest that a neuron containing multiple neuroactive substances can selectively affect postsynaptic elements by means of heterogeneous receptor localization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call