Abstract

Although insulin-like growth factors (IGF) I and II bind with high affinity to structurally discrete receptors, they bind with a lesser affinity to each other's receptor. We have evaluated the affinity of five different IGF-I preparations (three natural IGF-I preparations, one synthetic preparation, and one recombinant DNA-derived) for the IGF-II receptor in rat placental membranes, 18–54, SF cells and BRL-3A cells. In all tissues tested, the natural IGF-I preparations demonstrated an affinity for the IGF-II receptor which was 10–20% that of IGF-II. However, the recombinant and synthetic IGF-I preparations exhibited substantially lower affinities than natural IGF-I for this receptor, with only 10–25% reduction in (125-I)iodo IGF-II binding at peptide concentrations up to 400 ng/ml. Radioimmunoassay of the natural IGF-I preparations with an antibody directed against the unique C-peptide region of IGF-II demonstrated that contamination of IGF-I preparations with immunoreactive IGF-II could not exceed 5%. These results demonstrate that IGF-I purified from human plasma has a different affinity for the IGF-II receptor than does synthetic or recombinant IGF-I. Furthermore, there data are consistent with the hypothesis that IGF-I, itself, may be heterogeneous, and that subforms may vary in their affinities for the IGF receptors. Alternatively, IGF-I preparations which have been considered to be pure may be contaminated with small amounts of IGF-II, resulting in overestimation of the affinity of IGF-I for the type II IGF receptor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.