Abstract

Background: Intratumoral heterogeneity is a well-recognized characteristic feature of cancer. The purpose of this study is to assess the heterogeneity of the intratumoral glucose metabolism using fractal analysis, and evaluate its prognostic value in patients with esophageal squamous cell carcinoma (ESCC). Methods: 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) studies of 79 patients who received curative surgery were evaluated. FDG-PET images were analyzed using fractal analysis software, where differential box-counting method was employed to calculate the fractal dimension (FD) of the tumor lesion. Maximum standardized uptake value (SUVmax) and FD were compared with overall survival (OS). Results: The median SUVmax and FD of ESCCs in this cohort were 13.8 and 1.95, respectively. In univariate analysis performed using Cox's proportional hazard model, T stage and FD showed significant associations with OS (p = 0.04, p < 0.0001, respectively), while SUVmax did not (p = 0.1). In Kaplan-Meier analysis, the low FD tumor (<1.95) showed a significant association with favorable OS (p < 0.0001). In wthe multivariate analysis among TNM staging, serum tumor markers, FD, and SUVmax, the FD was identified as the only independent prognostic factor for OS (p = 0.0006; hazards ratio 0.251, 95% CI 0.104-0.562). Conclusion: Metabolic heterogeneity measured by fractal analysis can be a novel imaging biomarker for survival in patients with ESCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call