Abstract

While enhancers in a particular tissue coordinately fulfill regulatory functions, these functions are heterogeneous in nature and comprise of multiple enhancer subclasses and the associated regulatory mechanisms. In this work, we used multiple cell lines to identify enhancer subclasses linked to development, differentiation, and cellular identity. We found that enhancer functional heterogeneity during development encompasses subclasses of ubiquitous functions (11%), development specific regulatory activity (62%), and chromatin interactions (12%). In differentiated cell lines, ubiquitous enhancers (10%) stay active across multiple cell lines.They are accompanied by a large enhancer subclass (ranging from 33% to 63%) with functions specific to the corresponding lineage. The remaining enhancers (27–40%) establish regulatory chromatin structure and facilitate interactions of cell type-specific enhancers with their target promoters. In addition to specialized functions of cell type-specific enhancers, we show that proper accounting of enhancer heterogeneity leads to a 10% increase in accuracy of enhancer classification, which significantly improves the modeling of enhancers and identification of underlying regulatory mechanisms. In summary, our observations suggest that although cell type-specific enhancers are heterogeneous and coordinate different regulatory programs, enhancers from different cell lines maintain common categories of functional groups across developmental and differentiation stages, indicating a higher order rule followed by enhancer-gene regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call