Abstract

Assessing the transmission potential of emerging infectious diseases, such as COVID-19, is crucial for implementing prompt and effective intervention policies. The basic reproduction number is widely used to measure the severity of the early stages of disease outbreaks. The basic reproduction number of standard ordinary differential equation models is computed for homogeneous contact patterns; however, realistic contact patterns are far from homogeneous, specifically during the early stages of disease transmission. Heterogeneity of contact patterns can lead to superspreading events that show a significantly high level of heterogeneity in generating secondary infections. This is primarily due to the large variance in the contact patterns of complex human behaviours. Hence, in this work, we investigate the impacts of heterogeneity in contact patterns on the basic reproduction number by developing two distinct model frameworks: 1) an SEIR-Erlang ordinary differential equation model and 2) an SEIR stochastic agent-based model. Furthermore, we estimated the transmission probability of both models in the context of COVID-19 in South Korea. Our results highlighted the importance of heterogeneity in contact patterns and indicated that there should be more information than one quantity (the basic reproduction number as the mean quantity), such as a degree-specific basic reproduction number in the distributional sense when the contact pattern is highly heterogeneous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.