Abstract

Mutations in epidermal growth factor receptor and anaplastic lymphoma kinase are common driver events in non-small cell lung cancer (NSCLC), which are associated with a high frequency of bone metastases (BMs). While the bone marrow represents a specialized immune microenvironment, the immune repertoire of BMs remains unknown. Considering the higher incidence of BMs in driver gene-positive NSCLCs, and the unique biology of the bone, herein, we assessed the infiltrating immune cells and T cell receptor (TCR) profile of BMs in driver-positive NSCLCs. Immune profile of BMs in driver gene-positive NSCLC were assessed in 10 patients, where 6 had driver gene-positive mutation. TCR and bulk RNA sequencing were performed on malignant bone samples. The diversity and clonality of the TCR repertoire were analyzed. The cellular components were inferred from bulk gene expression profiles computationally by CIBERSORT. Although BMs were generally regarded as immune-cold tumors, immune cell composition analyses showed co-existence of cytotoxic and suppressor immune cells in driver-positive BM samples, as compared to primary lung. Analysis of the TCR repertoire indicated a trend of higher diversity and similar clonality in the driver-positive compared with the driver-negative subsets. In addition, we identified two cases that showed the opposite response to immune checkpoint blockade. A comparison of these two patients' BM samples showed more highly amplified clones, fewer M2 macrophages and more activated natural killer cells in the responder. In summary, BMs in NSCLC are heterogeneous in their immune microenvironment, which might be related to differential clinical outcomes to immune checkpoint blockade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call