Abstract
PurposeThis study was designed to explore the impact of a new cancer diagnosis on resilience of patients and whether the resilience patterns could predict Quality of Life (QoL) in the first year. MethodsAn exploratory linear piecewise growth mixture modeling (PGMM) with one hypothetical dot (3 months since diagnosis, T1) was employed to identify different resilience patterns and growth in 289 patients with different cancer diagnoses at five assessment occasions (T0-T4). Logistic regression analysis was performed to select potential predictors and receiver operating characteristic (ROC) curve analysis was utilized to test PGMM’s discriminative ability against 1-year QoL. ResultsFive discrete resilience trajectories with two growing trends were identified, including “Transcendence” (7.3%), “Resilient” (47.4%), “Recovery” (18.7%), “Damaged” (14.9%) and “Maladaption” (11.8%). Advanced stage, colorectal cancer, and receiving surgery therapy were significant predictors of negative resilience trajectories (“Damaged” or “Maladaption”). Discriminative ability was good for PGMM (AUC = 0.81, 95%CI, 0.76–0.85, P < 0.0001). ConclusionHeterogeneity is identified in resilience growth before and after 3 months since diagnosis. 26.7% newly diagnosed patients need additional attention especially for those with advanced colorectal cancer and receiving surgery therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.