Abstract

Bisphenol A (BPA) and its substitute fluorene-9-bisphenol (BHPF) are used in consumer products; however, their toxic effects on intestinal epithelium remain largely unknown. In this study, we combined intestinal organoids and single-cell RNA sequencing to investigate the impact of BPA and BHPF exposure on intestinal cell composition, differentiation, and function. Both compounds inhibited the growth of small intestinal organoids, with BHPF exhibiting a more potent inhibitory effect. BPA and BHPF did not significantly alter the overall cell type composition; however, they led to different alterations in cell–cell communications. Gene Ontology enrichment analysis showed that BPA and BHPF exposures affected various biological processes, such as glutathione transferase activity, antioxidant activity, and lipid metabolism, in cell type-specific and compound-dependent manners. Trajectory analysis demonstrated that BPA and BHPF altered the differentiation trajectory of the intestinal cells. To further connect the cellular mechanism to the phenotypic impact in vivo, we constructed a mouse model exposed to BPA or BHPF and observed significant alterations in intestinal morphology, including reduced crypt depth and villus length and impaired stem cell proliferation and self-renewal. These results provide novel insights into the cell type-specific effects of BPA and BHPF on the intestinal epithelium and highlight the potential risks of exposure to these compounds. Our findings underscore the importance of evaluating the safety of BPA substitutes and contribute to a better understanding of the effects of environmental chemicals on gut health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.