Abstract
Mesoscale drag model is of crucial significance for the reliability and accuracy in coarse-grid Eulerian–Eulerian two-fluid model (TFM) simulations of gas–solid flow hydrodynamics in fluidized bed reactors. Although numerous mesoscale drag models have been reported in the literature, a systematic comparison of their prediction capability from the perspective of heterogeneity analysis is still lacking. In this study, in order to investigate the effect of several typical drag models on the hydrodynamic behaviors, the nonuniformity analysis and the sensitivity to material properties, extensive coarse-grid TFM simulations of a bubbling pilot-scale fluidized bed reactor are carried out. The results demonstrate that the mesoscale drag models outperform the empirical drag model in terms of nonuniformity due to the consideration of the influence of the mesoscale structures on the drag force in the bubbling region. Furthermore, the results reveal that our previously developed three-marker gradient-based drag model considering the solid concentration gradient exhibits satisfactory performance in predicting the bubbling flow hydrodynamics. Besides, the material-property-dependent drag model considering the explicit effect of material properties on drag corrections is most sensitive to the particle diameter. This work provides guideline for possible future improvements of mesoscale models to simulate gas–solid flow more accurately and universally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.