Abstract

For the immobilization-stabilization of multimeric enzymes, we propose a novel heterofunctional support containing a very low concentration of ionized amino groups and a very high concentration of very poorly reactive glyoxyl (aldehyde) groups. A large tetrameric enzyme, β-galactosidase from Thermus sp., was purified and dramatically stabilized with this novel support. The enzyme was first immobilized by physical adsorption via selective multipoint anionic exchange involving the largest region of the enzyme containing all enzyme subunits. Then, an additional long incubation of the immobilized derivative under alkaline conditions was performed in order to promote an intense intramolecular multipoint covalent attachment between amino groups of the adsorbed enzyme and the very stable glyoxyl groups on the support. This novel β-galactosidase derivative is the first one in which the four subunits of this enzyme become attached to a pre-existing support. Additionally, the novel amino-glyoxyl supports were much more suitable than amino-epoxy supports for intramolecular multipoint covalent immobilization of the adsorbed enzyme onto the support. In fact, at pH 7.0, the new supports covalently immobilize the physically adsorbed protein 24-fold more rapidly than epoxy supports. Furthermore, derivatives prepared on amino-glyoxyl supports preserved 85% of catalytic activity and were 5-fold more stable than derivatives prepared on amino-epoxy supports and more than 1000-fold more stable than soluble enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.