Abstract

Magnetic materials in 2D have attracted widespread attention for their intriguing magnetic properties. 2D magnetic heterostructures can provide unprecedented opportunities for exploring fundamental physics and novel spintronic devices. Here, the heteroepitaxial growth of ferromagnetic CuCr2 Te4 nanosheets is reported on Cr2 Te3 and mica by chemical vapor deposition. Magneto-optical Kerr effect measurements reveal the thickness-dependent ferromagnetism of CuCr2 Te4 nanosheets on mica, where a decrease of Curie temperature (TC ) from 320 to 260K and an enhancement of perpendicular magnetic anisotropy with reducing thickness are observed. Moreover, lattice-matched heteroepitaxial ultrathin CuCr2 Te4 on Cr2 Te3 exhibits an enhanced robust ferromagnetism with TC up to 340K due to the interfacial charge transfer. Stripe-type magnetic domains and single magnetic domain are discovered in this heterostructure with different thicknesses. The work provides a way to construct robust room-temperature 2D magnetic heterostructures for functional spintronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.