Abstract

Composing together the experimental as well as the simulated results, we demonstrate here the atomic placements and the electronic structure at the epitaxial junction of a solution-processed heteronanostructure Au-ZnSe. Despite the large lattice mismatch (∼32%) between fcc Au and zinc-blende structured ZnSe, the heterostructures are formed via coincidence site epitaxy, which appears periodically because of the arrangements of their proper unit cell placements at the junction. This reduces the interface energy and drives the formation of such heteronanostructures. Details of the physical processes involved in the formation of these nanostructures have been discussed in this letter, and epitaxy at the heterojunction is strongly supported by HRTEM measurement and DFT calculation. This material has the possibility of plasmon-exciton coupling and therefore might be a futuristic material for utilizations in catalysis, nanoelectronics, and other related applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.