Abstract

High-quality InN epitaxial films have been grown by nitrogen-plasma-assisted molecular-beam epitaxy on Si(111) substrates using a double-buffer technique. Growth of a (0001)-oriented single crystalline wurtzite–InN layer was confirmed by reflection high-energy electron diffraction, x-ray diffraction, and Raman scattering. At room temperature, these films exhibited strong near-infrared (0.6–0.9 eV) photoluminescence (PL). In addition to the optical absorption measurement of absorption edge and direct band nature, the PL signal was found to depend linearly on the excitation laser intensity over a wide intensity range. These results indicate that the observed PL is due to the emission of direct band-to-band recombination rather than the band-to-defect (or impurity) deep emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.