Abstract

The heteroepitaxial growth of pure Ge films on (100) Si by an ultrahigh vacuum, chemical vapor deposition technique is reported for the first time. The growth mode is found to be critically dependent on the substrate temperature during deposition. Two temperature regimes for growth are observed. Between 300 and 375 °C, growth occurs in a two-dimensional, layer-by-layer mode, with an activation energy of 1.46 eV. Above 375 °C, island formation is observed. In the low-temperature regime the growth rate is controlled by a surface decomposition reaction, whereas in the high-temperature regime the growth rate is controlled by diffusion and adsorption from the gas phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.