Abstract

Abstract An iridium (100) layer was epitaxially coated on a MgO (100) plate by sputtering at 1123 K, and was then utilized in the formation of diamond by microwave plasma-assisted chemical vapor deposition (MPCVD) using methane as the carbon source. The electric contact between the substrate and holder was confirmed by coating the entire MgO surface with iridium. The iridium substrate was then treated by bias-enhanced nucleation under optimized conditions. It was found that diamond particles formed by MPCVD were essentially oriented to the iridium substrate. The diamond particles were then grown to the 〈100〉 and further to the 〈111〉, and a smooth diamond film was obtained. The full width at half maximum of the (400) rocking curve of the diamond film was 0.16°, which was close to that of a diamond single crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.