Abstract

We experimentally demonstrate 8 × 240-Gb/s super-Nyquist wavelength-division-multiplexing (WDM) polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission on a 50-GHz grid with a net spectral efficiency (SE) of 4b/s/Hz adopting hardware-efficient simplified heterodyne detection. 9-ary quadrature-amplitude-modulation-like (9QAM-like) processing based on multi-modulus blind equalization (MMBE) is adopted to reduce analog-to-digital converter (ADC) bandwidth requirement and improve receiver sensitivity. The transmission distance at the soft-decision forward-error-correction (SD-FEC) threshold of 2 × 10(-2) is 2 × 420 km based on digital post filtering while largely extended to over 5 × 420 km based on 9QAM-like processing, which well illustrates 9QAM-like processing is more efficient for heterodyne coherent WDM system. Moreover, only two ADC channels are needed for simplified heterodyne detection of one 60-Gbaud PDM-QPSK WDM channel, and thus only one commercial oscilloscope (OSC) with two input ports can work well for each WDM channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.