Abstract

Homeodomain proteins specify developmental pathways and cell-specific gene transcription whereby proteins of the PBC subclass can direct target gene specificity of Hox proteins. Proteins encoded by nonclustered homeobox genes have been shown to be essential for cell lineage differentiation and gene expression in pancreatic islets. Using specific antiserum in an electrophoretic mobility shift assay and in vitro transcribed/translated proteins, the nuclear proteins binding domain B of the G3 enhancer-like element of the glucagon gene were identified in the present study as heterodimers consisting of the ubiquitously expressed homeodomain protein Prep1 and the also widely expressed PBC homeoprotein Pbx (isoform 1a, 1b, or 2). These heterodimeric complexes were found to bind also to the glucagon cAMP response element and to a newly identified element termed G5 (from -169 to -140). Whereas the expression of Prep1 or Pbx forms alone had no effect, coexpression of Pbx1a/1b-Prep1 inhibited the glucagon promoter when activated by cotransfected Pax6 or another transcription factor in non-glucagon-producing cells. In contrast, in glucagon-producing pancreatic islet cells, Pbx-Prep1 had no effect on GAL4-Pax6-induced mutant glucagon promoter activity or on Pax6-dependent wild-type glucagon promoter activity. Furthermore, 5'-deletion of G5 enhanced glucagon promoter activity in a non-glucagon-producing cell line but not in glucagon-producing islet cells. This study thus identifies a novel target and Hox-independent function of Pbx-Prep1 heterodimers that, through repression of glucagon gene transcription in non-glucagon-producing cells, may help to establish islet cell-specific expression of the glucagon gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call