Abstract

We analyze unfoldings of a codimension two, steady-state/steady-state modal interaction possessing O(2) symmetry. At the degenerate bifurcation point there are two zero eigenvalues, each of multiplicity two. The spatial wavenumbers of the critical modes k i are assumed to satisfy k 2 = 2 k 1. We base our analysis on a detailed study of the third order truncation of the resulting equivariant normal form, which is a four-dimensional vector field. We find that heteroclinic cycles and modulated travelling waves exist for open sets of parameter values near the codimension two bifurcation point. We provide conditions on parameters which guarantee existence and uniqueness of such solutions and we investigate their stability types. We argue that such motions will be prevalent in continuum systems having the symmetry of translation and reflection with respect to one (or more) spatial directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.