Abstract

In this paper we study the chaotic behavior of a planar ordinary differential system with a heteroclinic loop driven by a Brownian motion, an unbounded random forcing. Unlike the case of homoclinic loops, two random Melnikov functions are needed in order to investigate the intersection of stable segments of one saddle and unstable segments of the other saddle. We prove that for almost all paths of the Brownian motion the forced system admits a topological horseshoe of infinitely many branches. We apply this result to the Josephson junction and the soft spring Duffing oscillator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.