Abstract

A combined light- and electron-microscopic examination of chromosomes from two angiospermous plants, Plantago ovata and Lycopersicon esculentum, and a mammal, Mus musculus, was performed. From this investigation three observations have been made that may be relevant to the observed lack of crossing over in heterochromatin. (1) Differential staining indicates that heterochromatin represents a smaller fraction of the length of pachytene chromosomes than it represents in the length of mitotic metaphase chromosomes. Since the synaptonemal complex (SC) runs throughout the length of these pachytene chromosomes, it is under-represented in heterochromatin. Considering the evidence for a rough correlation between the length of SC and the amount of crossing over, this could result in less crossing over in heterochromatin than expected on the basis of its length in mitotic metaphase chromosomes. (2) Electron microscopy indicates that, unlike the SC in euchromatin, the SC in heterochromatin is densely ensheathed in highly compact chromatin. If crossing over occurs in the SC or even in the surrounding chromatin, the compaction of the chromatin may prevent the penetration of enzymes needed in recombination. (3) Finally, a difference in the structure of SCs in euchromatin versus heterochromatin was observed that could be associated with the lack of crossing over in heterochromatin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.