Abstract

Repetitive DNA sequences constitute a high fraction of eukaryotic genomes and are considered a key component for the chromosome and karyotype evolution. For a better understanding of their evolutionary role in beetles, we examined the chromosomes of 5 species of the genus Coprophanaeus by C-banding, fluorochrome staining CMA<sub>3</sub>/DA/DAPI, and fluorescence in situ hybridization (FISH) with probes for 18S and 5S rRNA genes. The Coprophanaeus species have identical chromosome numbers and a conserved chromosome morphology. However, they show different sex chromosome forms, XY, Xy, XY<sub>p</sub>, and heterochromatin seems to be involved in the origin and diversification of these forms. C-banding showed primarily the presence of diphasic chromosomes in all species examined. After CMA<sub>3</sub>/DA/DAPI staining, 1–9 autosomal pairs showed CMA<sub>3</sub>-positive blocks depending on the species, while DAPI-positive blocks were detected only in Coprophanaeusdardanus. FISH mapping revealed 5S rDNA signals in one autosomal pair in each species, whereas the number of pairs with 18S rDNA signals varied from 1–8 between the Coprophanaeus species. Our results suggest that distinct genetic mechanisms had been involved in the karyotype evolution of Coprophanaeus species, i.e. mechanisms maintaining the conserved number of 5S rDNA clusters and those generating variability in the amount of heterochromatin, sex chromosome forms, and distribution of 18S rDNA clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.