Abstract

The absence of a straightforward strategy to interface native d-DNA with its enantiomer l-DNA-oligonucleotides of opposite chirality are incapable of forming contiguous Watson-Crick base pairs with each other-has enforced a "homochiral" paradigm over the field of dynamic DNA nanotechnology. As a result, chirality, a key intrinsic property of nucleic acids, is often overlooked as a design element for engineering of DNA-based devices, potentially limiting the types of behaviors that can be achieved using these systems. Here we introduce a toehold-mediated strand-displacement methodology for transferring information between orthogonal DNA enantiomers via an achiral intermediary, opening the door for "heterochiral" DNA nanotechnology having fully interfaced d-DNA and l-DNA components. Using this approach, we demonstrate several heterochiral DNA circuits having novel capabilities, including autonomous chiral inversion of DNA sequence information and chirality-based computing. In addition, we show that heterochiral circuits can directly interface endogenous RNAs (e.g., microRNAs) with bioorthogonal l-DNA, suggesting applications in bioengineering and nanomedicine. Overall, this work establishes chirality as a design parameter for engineering of dynamic DNA nanotechnology, thereby expanding the types of architectures and behaviors that can be realized using DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call