Abstract

A series of Pt-based heterobimetallic lantern complexes of the form [PtM(SAc)4(OH2)] (M = Co, 1; Ni, 2; Zn, 3) were prepared using a facile, single-step procedure. These hydrated species were reacted with 3-nitropyridine (3-NO2py) to prepare three additional lantern complexes, [PtM(SAc)4(3-NO2py)] (M = Co, 4; Ni, 5; Zn, 6), or alternatively dried in vacuo to the dehydrated species [PtM(SAc)4] (M = Co, 7; Ni, 8; Zn, 9). The Co- and Ni-containing species exhibit Pt-M bonding in solution and the solid state. In the structurally characterized compounds 1-6, the lantern units form dimers in the solid state via a short Pt···Pt metallophilic interaction. Antiferromagnetic coupling between 3d metal ions in the solid state through noncovalent metallophilic interactions was observed for all the paramagnetic lantern complexes prepared, with J-coupling values of -12.7 cm(-1) (1), -50.8 cm(-1) (2), -6.0 cm(-1) (4), and -12.6 cm(-1) (5). The Zn complexes 3 and 6 also form solid-state dimers, indicating that the formation of short Pt···Pt interactions in these complexes is not predicated on the presence of a paramagnetic 3d metal ion. These contacts and the resultant antiferromagnetic coupling are also not unique to heterobimetallic lantern complexes with axially coordinated H2O or the previously reported thiobenzoate supporting ligand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.