Abstract
The more electronegative atoms of element like nitrogen, fluorine and oxygen in CNTs are highly desirable for electrochemical catalytic reactions like oxygen evolution reaction (OER). Herein, we report the synthesis of in situ nitrogen-doped CNTs by CVD method on fcc NiCo alloy-silica nanocomposites in ethylene precursor containing 10% acetonitrile and their catalytic behaviour for oxygen evolution in alkaline media. The XPS analysis revealed that about 2 atomic% nitrogen was successfully doped in CNTs. Although the amount of doped nitrogen was not substantial, it played a significant role in the formation of bamboo-shaped CNTs by facilitating the conical shape of nanocatalyst. The internal core of the CNTs was analysed by TEM studies and it was found that CNTs have irregular cup and cone compartments repeated at a distance of about 50 nm. The oxygenated functional groups in the form of C=O and O–F were also found which owe their presence on the surface of CNTs to the aqueous HF treatment. The unique features like the presence of heteroatoms (N, F, O) at the graphitic planes of CNTs and its bamboo shape have collectively improved the OER performance of our synthesised carbonaceous material. As a result it exhibited OER overpotential of 315 mV at current density of 10 mA/cm2, which was better than many reported carbonaceous materials in alkaline media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.