Abstract

Density functional theory calculations were carried out to investigate the effect of oligomer length, halogen substitution, and heteroatom substitution on the organic field-effect transistor (OFET) performance of a series of oligothienoacenes (1−5 for oligothienoacene with thiophene units' number from two to six). Compounds 1−5 are revealed to act only as p-type semiconductors due to their very high electron injection barrier relative to the work function potential of Au source-drain electrodes. Heteroatom substitution of the thiophene sulfur atom in particular with boron in the fused-ring thiophene oligomer 5 was revealed to elevate the HOMO energy level and lower the LUMO energy level and therefore lower both the hole and electron injection barriers. However, halogen substitution cannot effectively improve the electron injection barrier, but significantly increased the reorganization energy, therefore leading to decreased transfer mobility. The appropriate ionization potential and electron affinity, bal...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call