Abstract

Biodiesel, a fuel derived from renewable sources, has garnered significant attention from energy researchers over the past two decades as a clean alternative to diesel fuel. This increased interest can be attributed to the alarming impact of climate change caused by the use of traditional diesel fuel. This paper focuses on showcasing the qualities of biodiesel produced from used waste oil and the positive impact on the alarming change in climate today. The observable characteristics of used waste oil for the synthesis of biodiesel in the presence of an ethanolic CaO-K2 O-SiO2 base catalyst created from leftover palm kernel empty bunches was rigorously explored in this study. The catalyst obtained from Palm Kernel Bunch Stem (PKBS) was characterized using Scanning Electron Microscope (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), Extended Range Spectroscopy - Flame Photometry (XRS-FP), Brunauer-Emmett-Teller analyzer (BET) isothermal adsorption and qualitative analysis. Reusability of catalyst and economic evaluation of the synthesized biodiesel were also evaluated. The quality of the Oil was identified through standard techniques by examining its physicochemical characteristics as well as other elements. According to the findings, the improved Used Waste Oil (UWO) characteristics met the specifications for oil required to produce biodiesel. The Used Waste Oil’s physicochemical properties included the oil’s physical condition as liquid/dark brownish at 28, acid value of 0.96 (mg KOH/g oil), FFA (% oleic acid), 0.48, iodine value of 152.00 (I2g/100g), and peroxide value of 5.1 milli-equivalent of peroxide/kg of oil, among others. The obtained catalyst demonstrated high basic strength with potassium oxide (61.63 wt/%) being the predominant component. At run 5 with 98.52 (%wt /wt), 65 minutes reaction time, 4.0 (%wt) catalyst amount, reaction temperature of 70 , and a 7:1 ethanol to oil ratio produced the highest biodiesel yield. The study concluded that, UWO can possibly be utilized as an economically benign feedstock for the production of biodiesel, and the resultant catalyst could potentially be employed in industries as bio-base.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.