Abstract

Particulate organic matter (POM), composed of fine root fragments and other organic debris, is an important fraction of soil organic matter which can affect the fate of nanoparticles and influence their performance in nanoparticle-based remediation technologies due to aggregation. Effects of POM are not well studied compared with those of dissolved organic matter. In this research, POM was extracted from black soil by sieving, and heteroaggregation of selenium nanoparticles (SeNPs) with POM and consequences for elemental mercury (Hg0) immobilization were investigated. It was found that low concentrations of more negatively charged POM (0–60 mg L−1) inhibited homoaggregation as well as heteroaggregation with SeNPs which had a lower negative charge through electrostatic repulsion. In the presence of high concentrations of POM (80–100 mg L−1), SeNPs were more likely to attach to POM with more Hg0 remaining in the POM since a larger concentration of nanoparticles would lead to more effective collisions. However, Hg0 immobilization efficiency using SeNPs was not significantly influenced by the addition of POM. This work is helpful to further understand the nanoparticle's behaviour in the environment and consequences for toxic metal remediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.