Abstract

Experimentally determined heteroaggregation rates between charged and neutral colloidal particles are reported for the first time. Different positively and negatively charged polystyrene latex particles are investigated. The neutral particles are obtained through adsorption of an appropriate amount of oppositely charged additives, such as aliphatic oligoamines, iron cyanide complexes, or alkyl sulfates. Heteroaggregation rates were measured with time-resolved multiangle light scattering. One observes that heteroaggregation between charged and neutral particles is always fast and diffusion controlled. These experimental values are compared with calculations of the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, whereby one finds that this heteroaggregation process is highly sensitive to charge regulation conditions. The comparison with experiments shows unambiguously that the surface of the neutral particles regulates strongly and probably behaves close to a constant potential surface. This observation is in line with direct force measurements on similar systems and further agrees with the fact that for neutral surfaces the capacitance of the diffuse layer is expected to be much smaller than the one of the inner layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call