Abstract

The electronic structure of transition metal complexes can be modulated by replacing partial ion of complexes to obtain tuned intrinsic oxygen reduction reaction (ORR) or oxygen evolution reaction (OER) electrocatalytic activity. However, the anion-modulated transition metal complexes ORR activity of is still unsatisfactory, and the construction of hetero-anionic structure remains challenging. Herein, an atomic doping strategy is presented to prepare the CuCo2 O4-x Sx /NC-2 (CCSO/NC-2) as electrocatalysts, the structrual characterization results favorably demonstrate the partial substitution of S atoms for O in CCSO/NC-2, which shows excellent catalytic performance and durability for OER and ORR in 0.1m KOH. In addition, the catalyst assembled Zinc-air battery with an open circuit potential of 1.43V maintains performance after 300h of cyclic stability. Theoretical calculations and differential charges illustrate that S doping optimizes the reaction kinetics and promotes electron redistribution. The superior performance of CCSO/NC-2 catalysis is mainly due to its unique S modulation of the electronic structure of the main body. The introduction of S promotes CoO covalency and constructs a fast electron transport channel, thus optimizing the adsorption degree of active site Co to the reaction intermediates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.