Abstract

Drosophila telomeres have been maintained by retrotransposition for at least 60 MY, which predates the separation of extant species of this genus. Studies of D. melanogaster, D. yakuba, and D. virilis show that, in Drosophila, telomeres are composed of two non-LTR retrotransposons, HeT-A and TART. Far from being static, HeT-A and TART evolve faster than Drosophila euchromatic genes. In spite of their high rate of sequence change, HeT-A and TART maintain their basic structures and unusual individual features. The maintenance of their separate identities suggests that HeT-A and TART cooperate either in the process of retrotransposition onto the chromosome end, or in the formation of telomere chromatin by transposed DNA copies. The telomeric retrotransposons and the Drosophila genome constitute an example of a robust symbiotic relationship between mobile elements and the genome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call