Abstract
We derive new gradient flows of divergence functions in the probability space embedded with a class of Riemannian metrics. The Riemannian metric tensor is built from the transported Hessian operator of an entropy function. The new gradient flow is a generalized Fokker-Planck equation and is associated with a stochastic differential equation that depends on the reference measure. Several examples of Hessian transport gradient flows and the associated stochastic differential equations are presented, including the ones for the reverse Kullback--Leibler divergence, alpha-divergence, Hellinger distance, Pearson divergence, and Jenson--Shannon divergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.