Abstract

In recent years, semi-supervised learning has played a key part in large-scale image management, where usually only a few images are labeled. To address this problem, many representative works have been reported, including transductive SVM, universum SVM, co-training and graph-based methods. The prominent method is the patch alignment framework, which unifies the traditional spectral analysis methods. In this paper, we propose Hessian regression based on the patch alignment framework. In particular, we construct a Hessian using the patch alignment framework and apply it to regression problems. To the best of our knowledge, there is no report on Hessian construction from the patch alignment viewpoint. Compared with the traditional Laplacian regularization, Hessian can better match the data and then leverage the performance. To validate the effectiveness of the proposed method, we conduct human face recognition experiments on a celebrity face dataset. The experimental results demonstrate the superiority of the proposed solution in human face classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.