Abstract

Within the framework of linear vector Gaussian channels with arbitrary signaling, the Jacobian of the minimum mean square error and Fisher information matrices with respect to arbitrary parameters of the system are calculated in this paper. Capitalizing on prior research where the minimum mean square error and Fisher information matrices were linked to information-theoretic quantities through differentiation, the Hessian of the mutual information and the entropy are derived. These expressions are then used to assess the concavity properties of mutual information and entropy under different channel conditions and also to derive a multivariate version of an entropy power inequality due to Costa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.