Abstract
For a connected, simply-connected complex simple algebraic group $G$, we examine a class of Hessenberg varieties associated with the minimal nilpotent orbit. In particular, we compute the Poincare polynomials and irreducible components of these varieties in Lie type $A$. Furthermore, we show these Hessenberg varieties to be GKM with respect to the action of a maximal torus $T\subseteq G$. The corresponding GKM graphs are then explicitly determined. Finally, we present the ordinary and $T$-equivariant cohomology rings of our varieties as quotients of those of the flag variety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.