Abstract

Abstract. Global hydroclimatic conditions have been substantially altered over the past century by anthropogenic influences that arise from the warming global climate and from local/regional anthropogenic disturbances. Traditionally, studies have used coupling of multiple models to understand how land-surface water fluxes vary due to changes in global climatic patterns and local land-use changes. We argue that because the basis of the Budyko framework relies on the supply and demand concept, the framework could be effectively adapted and extended to quantify the role of drivers – both changing climate and local human disturbances – in altering the land-surface response across the globe. We review the Budyko framework, along with these potential extensions, with the intent of furthering the applicability of the framework to emerging hydrologic questions. Challenges in extending the Budyko framework over various spatio-temporal scales and the use of global datasets to evaluate the water balance at these various scales are also discussed.

Highlights

  • Besides the aridity index, which is defined as the ratio of the mean annual potential evapotranspiration to the mean annual precipitation, Milly (1994) and Sankarasubramanian and Vogel (2002) proposed additional controls on the long-term water balance, including seasonality and soil moisture holding capacity

  • Given the Budyko framework’s ability to capture the fundamental dimensions of land-surface fluxes, its emphasis on describing patterns of variation across differing hydrogeologic and hydroclimatic regimes, and, by extension, its emphasis on an integrative, Darwinian approach, a global synthesis addressing the variability in these fluxes across natural and human-altered watersheds should provide insights into the sensitivity of the critical hydroclimatic processes to local and global changes in the Anthropocene

  • In the long-term water balance context, defining the demand– supply relationship explains the predominant controls on the spatio-temporal variability of mean annual runoff and mean annual evapotranspiration based on the basin aridity, seasonality of demand and supply attributes, and soil moisture holding capacity (Milly, 1994)

Read more

Summary

The historical evolution of the Budyko framework in hydroclimatology

The traditional Budyko formulation provides the long-term water balance as a simple but effective partitioning of precipitation into runoff and evapotranspiration, and it has been verified over numerous natural watersheds around the globe (Sankarasubramanian and Vogel, 2003; Zhang et al, 2004; Yang et al, 2007; Li et al, 2013; Padrón et al, 2017). Besides the aridity index, which is defined as the ratio of the mean annual potential evapotranspiration to the mean annual precipitation, Milly (1994) and Sankarasubramanian and Vogel (2002) proposed additional controls on the long-term water balance, including seasonality and soil moisture holding capacity These additional controls enhance the ability of the Budyko framework to explain the spatial variability in mean annual runoff at the continental scale. Given the Budyko framework’s ability to capture the fundamental dimensions of land-surface fluxes, its emphasis on describing patterns of variation across differing hydrogeologic and hydroclimatic regimes, and, by extension, its emphasis on an integrative, Darwinian approach, a global synthesis addressing the variability in these fluxes across natural and human-altered watersheds should provide insights into the sensitivity of the critical hydroclimatic processes to local and global changes in the Anthropocene

Budyko framework for the Anthropocene
Budyko framework adaptation in watershed modeling
Long-term water balance
Extension of Budyko’s “supply and demand” concept for infiltration
Extending Budyko framework for human-altered watersheds and landscapes
Representing human demand and environmental flows in from reservoir operation
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.