Abstract

Calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a key regulatory molecule of cell signaling, and thereby controls its growth and proliferation, including expression of certain genes. The overexpression of CAMKIV is directly associated with the development of different types of cancers. Hesperidin is abundantly found in citrus fruits and exhibits wide range of pharmacological activities including anti-inflammatory, antibacterial and anticancerous effects. We have investigated binding mechanism of hesperidin with the CAMKIV using molecular docking methods followed by fluorescence quenching and isothermal titration calorimetric assays. An appreciable binding affinity of hesperidin was observed with CAMKIV during fluorescence quenching and isothermal titration calorimetric studies. Efficacy of hesperidin to inhibit the growth of human hepatic carcinoma (HepG2) and neuroblastoma (SH-SY5Y) cancer cell lines were investigated. Hesperidin has significantly reduced the proliferation of HepG2 and SH-SY5Y cells and induces apoptosis by activating the caspase-3-dependent intrinsic pathway through the upregulation of proapoptotic Bax protein. Hesperidin treatment reduces the mitochondrial membrane potential of HepG2 and SH-SY5Y cells. All these observations clearly anticipated hesperidin a potent inhibitor of CAMKIV which may be further exploited a newer therapeutic approach for the management of different cancer types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call