Abstract
The role of mitochondrial dysfunction and oxidative stress has been well-documented in Alzheimer's disease (AD). Bioflavonoids are being utilised as neuroprotectants in the treatment of various neurological disorders, including AD. Therefore, we conducted this current study in order to explore the effects of hesperidin (a flavanone glycoside) against amyloid-β (Aβ)-induced cognitive dysfunction, oxidative damage and mitochondrial dysfunction in mice. Three-month-old APPswe/PS1dE9 transgenic mice were randomly assigned to a vehicle group, two hesperidin (either 50 or 100mg/kg perday) groups, or an Aricept (2.5mg/kg perday) group. After 16weeks of treatment, although there was no obvious change in Aβ deposition in the hesperidin-treated (100mg/kg perday) group, however, we found that the administration of hesperidin (100mg/kg perday) resulted in the reduction of learning and memory deficits, improved locomotor activity, and the increase of anti-oxidative defense and mitochondrial complex I-IV enzymes activities. Furthermore, Glycogen synthase kinase-3β (GSK-3β) phosphorylation significantly increased in the hesperidin-treated (100mg/kg perday) group. Taken together, these findings suggest that a reduction in mitochondrial dysfunction through the inhibition of GSK-3β activity, coupled with an increase in anti-oxidative defense, may be one of the mechanisms by which hesperidin improves cognitive function in the APPswe/PS1dE9 transgenic mouse model of AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.