Abstract

Within the HESPERIA Horizon 2020 project, two novel real-time tools to predict Solar Energetic Particle (SEP) events were developed. The HESPERIA UMASEP-500 tool makes real-time predictions using a lag-correlation between the soft X-ray (SXR) flux and high-energy differential proton fluxes of the GOES satellite network. We found that the use of proton data alone allowed this tool to make predictions before any Neutron Monitor (NM) station’s alert. The performance of this tool for predicting Ground Level Enhancement (GLE) events for the period 2000–2016 may be summarized as follows: the probability of detection (POD) was 53.8%, the false alarm ratio (FAR) was 30%, and the average warning time (AWT) to the first NM station’s alert was 8 min. The developed HESPERIA REleASE tool makes real-time predictions of the proton flux-time profiles of 30–50 MeV protons at L1 and is based on electron intensity measurements of energies from 0.25 to 1 MeV and their intensity changes. The performance was tested by using all historic ACE/EPAM and SOHO/EPHIN data from 2009 until 2016 and has shown that the forecast tools have a low FAR (∼30%) and a high POD (63%). Furthermore, two methods using historical data were explored for predicting SEP events and compared. The UMASEP-10mw tool was developed for predicting >10 MeV SEP events using microwave data. The time derivative of the soft X-rays (SXR) was replaced by the microwave flux density. It was found that the use of SXRs and microwave data produced the same POD (∼78%) with the most notable difference being that the use of microwave data does not yield any false alarm. Furthermore, a study was carried out on the possibility for the microwave emissions to be used to predict the spectral hardness of the SEP event and important results were deduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.