Abstract
A part of the auditory system automatically detects changes in the acoustic environment. This preattentional process has been studied extensively, yet its cerebral origins have not been determined with sufficient accuracy to allow comparison to established anatomical and functional parcellations. Here we used event-related functional MRI and EEG in a parametric experimental design to determine the cortical areas in individual brains that participate in the detection of acoustic changes. Our results suggest that automatic change processing consists of at least three stages: initial detection in the primary auditory cortex, detailed analysis in the posterior superior temporal gyrus and planum temporale, and judgment of sufficient novelty for the allocation of attentional resources in the mid-ventrolateral prefrontal cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.