Abstract

During mammalian neocortical development, neural stem/progenitor cells (NSCs) sequentially give rise to deep layer neurons and superficial layer neurons through mid- to late-embryonic stages, shifting to gliogenic phase at perinatal stages. Previously, we found that the Hes genes inhibit neuronal differentiation and maintain NSCs. Here, we generated transgenic mice that overexpress Hes5 in NSCs of the central nervous system, and found that the transition timing from deep to superficial layer neurogenesis was shifted earlier, while gliogenesis precociously occurred in the developing neocortex of Hes5-overexpressing mice. By contrast, the transition from deep to superficial layer neurogenesis and the onset of gliogenesis were delayed in Hes5 knockout (KO) mice. We found that the Hmga genes (Hmga1/2) were downregulated in the neocortical regions of Hes5-overexpressing brain, whereas they were upregulated in the Hes5 KO brain. Furthermore, we found that Hes5 expression led to suppression of Hmga1/2 promoter activity. These results suggest that Hes5 regulates the transition timing between phases for specification of neocortical neurons and between neurogenesis and gliogenesis, accompanied by alteration in the expression levels of Hgma genes, in mammalian neocortical development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.