Abstract

Recent observations of the Rho Ophiuchi cluster with the Herschel Space Observatory allow us to probe the spectral energy distribution (SED) of the brown dwarf population in the far-IR, where the disk emission peaks. We performed aperture photometry at 70, 100, and 160 micron, and constructed SEDs for all previously known brown dwarfs detected. These were complemented with ancillary photometry at shorter wavelengths. We compared the observed SEDs to a grid of synthetic disks produced with the radiative transfer code MCFOST, and used the relative figure of merit estimated from the Bayesian inference of each disk parameter to analyse the structural properties. We detected 12 Class II brown dwarfs with Herschel, which corresponds to one-third of all currently known brown dwarf members of Rho Ophiuchi. We do not detect any of the known Class III brown dwarfs. Comparison to models reveals that the disks are best described by an inner radius between 0.01 and 0.07 AU, and a flared disk geometry with a flaring index between 1.05 and 1.2. Furthermore, we can exclude values of the disk scale-height lower than 10 AU (measured at a fiducial radius of 100 AU). We combined the Herschel data with recent ALMA observations of the brown dwarf GY92 204 (ISO-Oph 102), and by comparing its SED to the same grid of disk models, we derived an inner disk radius of 0.035 AU, a scale height of 15 AU with a flaring index of beta~1.15, an exponent for dust settling of -1.5, and a disk mass of 0.001 MSun. This corresponds to a disk-to-central object mass ratio of ~1%. The structural parameters constrained by the extended SED coverage (inner radius and flaring index) show a narrow distribution for the 11 young brown dwarfs detected in Rho Ophiuchi, suggesting that these objects share the same disk evolution and, perhaps, formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call