Abstract

A novel supercontinuum laser absorption spectroscopy (SCLAS) approach combining a planar external Herriott multi-pass cell (HMPC) with fully single-mode fiber (SMF) coupling is presented for broadband multi-scalar combustion measurements in a rapid compression expansion machine (RCEM). For the HMPC, 1-dimensional refractive index gradients occurring in the RCEM combustion chamber are analyzed via ray-tracing with respect to axial and vertical beam steering. The impact of beam steering on the SCLAS signal is compared with the ray-tracing analysis and high-speed flame luminosity images. SCLAS based measurements are presented during compression, auto-ignition and combustion in the RCEM for n-heptane/methane mixtures at varied AFR (air-fuel ratio) and n-heptane/EGR (exhaust gas recirculation) mixtures at temperatures exceeding 1800 K and pressures up to 80 bar. Simultaneous temperature and mole fraction courses of H2O, CH4, and CO2 are inferred from NIR (near-infrared) broadband absorbance spectra detected by a Czerny Turner spectrometer (CTS) in a spectral range of 1374 nm to 1669 nm. The multi-pass approach with SMF coupling, which avoids multi-mode fiber induced noise, allows for high-speed multi-species SCLAS measurements with low standard deviations; for temperature this amounts to about 5 K and partially below at a temporal resolution of 25 µs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call