Abstract
A complex interaction has evolved between the host's peripheral nervous system (PNS) and herpes simplex virus type 1 (HSV-1). Sensory neurons are permissive for viral replication, yet the virus can also enter a latent state in these cells. The interplay of viral and neuronal signals that regulate the switch between the viral lytic and latent states is not understood. The latency-associated transcript (LAT) regulates the establishment of the latent state and is required for >65% of the latent infections established by HSV-1 (R. L. Thompson and N. M. Sawtell, J. Virol. 71:5432-5440, 1997). To further investigate how LAT functions, a 1.9-kb deletion that includes the entire LAT promoter and 827 bp of the 5' end of the primary LAT mRNA was introduced into strain 17syn+. The wild-type parent, three independently derived deletion mutants, and two independently derived genomically rescued variants of the mutants were analyzed in a mouse ocular model. The number of latent sites established in trigeminal ganglion (TG) neurons was determined using a single-cell quantitative PCR assay for the viral genome on purified TG neurons. It was found that the LAT null mutants established ~75% fewer latent infections than the number established by the parental strain or rescued variant. The reduced establishment phenotype of LAT null mutants was due at least in part to a dramatic increase in the loss of TG neurons in animals infected with the LAT mutants. Over half of the neurons in the TG were destroyed following infection with the LAT mutants, and this was significantly more than were lost following infection with wild type. This is the first demonstration that the HSV LAT locus prevents the destruction of sensory neurons. The death of these neurons did not appear to be the result of increased apoptosis as measured by a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay. Animals latently infected with the LAT null mutants reactivated less frequently in vivo and this was consistent with the reduction in the number of neurons in which latency was established. Thus, one function of the LAT gene is to protect sensory neurons and enhance the establishment of latency in the PNS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.