Abstract

Mucosal epithelia are invaded from the apical surface during a primary infection by herpes simplex virus type 1 (HSV-1). HSV-1 progeny virus, synthesized from latently infected peripheral neurons that innervate such epithelia, reinfects the epithelia most likely from the basolateral surface. The epithelial cell lines MDCK and Caco-2 can be induced in vitro to differentiate into polarized cells with distinct apical and plasma membrane domains separated by tight junctions if they are cultured on porous membrane filters. Our data using these culture systems showed that highly polarized epithelial cells were not susceptible to apical HSV-1 infection. However, HSV-1 infected these cells if added from the basolateral surface or if a depletion of extracellular Ca(2+) had weakened the strength of the cell-cell contacts. Basolateral infection and apical infection after the Ca(2+) switch required an intact microtubule network for genome targeting to the nucleus. This system can be used to identify the microtubule motors that HSV-1 uses during virus entry in polarized epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.