Abstract

The photodynamic inactivation of herpes simplex virus type 1 (HSV-1) by two phthalocyanines (Pcs), the cationic dye HOSiPcOSi(CH 3) 2(CH 2),N + (CH 3) 3I − (Pc5) and the amphiphilic dye aluminum dibenzodisulfophthalocyanine hydroxide ( AlN 2SB 2POH), has been compared with that by the anionic dye, Merocyanine 540 (Mc540). Both Pc derivatives demonstrate a remarkable virucidal activity upon light activation even 3 h after the onset of HSV-1 adsorption, while Mc540 is effective for only 30 min after adsorption. Since fusion and virus penetration are promoted by membrane glycoproteins, we have studied the damage to viral proteins following photodynamic treatment (PDT) of HSV-1 and its relation to inactivation. The effect of AlN 2SB 2POH PDT is assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Major changes are found in the protein profile of PDT-treated HSV-1. A reduced ability of specific antibodies to react with HSV-1 major envelope proteins is detected by employing the Western blot assay. In particular, we demonstrate the related changes of glycoprotein D (gD), a structural protein of the HSV envelope. Since the envelope proteins participate in viral entry into the host cell, these alterations to viral envelope proteins may impair their ability to participate in early events of viral entry, leading to reduced infectivity of HSV-1. In contrast, no significant changes in the proteins' electrophoretic mobility could be seen after PDT with Mc540 or with Pc5. When HSV-1 purified proteins are subjected to combined electrophoretic and electro-osmotic forces on cellulose acetate, there is a shift in their cathode mobility, which may indicate changes in the protein mass and protein net charges following AlN 2SB 2POH photosensitization. There are only minor changes in the virus proteins, assayed as above, when HSV-1 is treated with Pc5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.