Abstract

Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.