Abstract

BackgroundGiven that ocular glands become infected secondarily to herpes simplex virus 1 (HSV-1) keratitis, resulting in the loss of tear production, sweat glands may also be susceptible to HSV-1 infection, resulting in sweating disturbance, which is observed frequently in atopic dermatitis. However, due to the lack of sweat glands on the hairy skin of mice, the role of sweating in the maintenance of skin hydration has not been elucidated. ObjectiveTo determine the relationship between HSV-1 infection of sweat glands and sweating disturbance-induced dry skin. MethodsBy using the impression mold technique, we examined the sweating response together with the detection of HSV-1 DNA in the sweat glands of footpads, the only area with sweat glands in mice, after local cutaneous HSV-1 inoculation of immunocompetent mice. ResultsThe sweating response and skin surface hydration were significantly decreased at 7–14 days post-infection. Sweating disturbance and dry skin was markedly enhanced when HSV-1 inoculation was followed by hyperthermic stress. Both resolved spontaneously and became resistant to a second HSV-1 inoculation, associated with increased anti-HSV-IgG antibodies. HSV-1 DNA was detected in sweat glands and dorsal root ganglia. The sweating response remained decreased after subcutaneous injection with pilocarpine, correlating histologically with marked dilatation of sweat gland lumens. These findings indicate that sweating disturbance is unlikely to be the outcome of nerve damage by HSV-1 infection. ConclusionSweating disturbance could be due to HSV-induced dysfunction of sweat glands. We developed a sweating disturbance-induced dry skin mouse model by infection with HSV-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.