Abstract
Iannarelli's studies demonstrated that ear shape represents a biometric identifier able to authenticate people in the same way as more established biometrics, like face or voice for instance. However, not many researches can be found in literature about ear recognition. In most cases existing algorithms are borrowed from other biometric contexts. An example is PCA (Principal Component Analysis). Eigen-ears only provide high recognition rate in closely controlled conditions, while performances decay even for small changes in environmental conditions. We propose a fractal based technique, namely HERO (Human Ear Recognition against Occlusions) to classify human ears. The feature extraction process has been made local, so that the system gets robust with respect to small changes in pose/illumination and partial occlusions. Experimental results confirm the superiority of this approach over several linear and non linear techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.