Abstract
The work objective is speeding the covariance matrix converter of the adaptive antenna array interference by reducing the number of operations performed. A problem of developing an aprior information inversion algorithm relying on the Hermitian nature of the reversible matrix is considered. The proposed algorithm is based on a bordering method in contrast to the well-known algorithms based on method of Gaussian-Jordan elimination. Because of complexity and a large operation number, Gaussian-Jordan method does not allow realizing the real time signal processing in computing systems of the adaptive antenna arrays that are widely used in communication, radiolocation, and radio navigation systems. The proposed algorithm extends a well-known bordering method by taking into account Hermitian nature of the covariance interference matrix, and allows developing an algorithm based on the recursive relations. An obtained gain in amount of calculation is no less than 25% comparing to the method of Gaussian-Jordan elimination. The calculation amount decrease and a more simple form of relations used for the matrix inversion algorithm elaboration allow developing a more simple design of the adaptive antenna array processor for the matrix inversion.
Highlights
The work objective is speeding the covariance matrix converter of the adaptive antenna array interference by reducing the number of operations performed
A problem of developing an aprior information inversion algorithm relying on the Hermitian nature of the reversible matrix is considered
The proposed algorithm is based on a bordering method in contrast to the well-known algorithms based on method of Gaussian-Jordan elimination
Summary
The work objective is speeding the covariance matrix converter of the adaptive antenna array interference by reducing the number of operations performed. A problem of developing an aprior information inversion algorithm relying on the Hermitian nature of the reversible matrix is considered. The proposed algorithm is based on a bordering method in contrast to the well-known algorithms based on method of Gaussian-Jordan elimination. Because of complexity and a large operation number, Gaussian-Jordan method does not allow realizing the real time signal processing in computing systems of the adaptive antenna arrays that are widely used in communication, radiolocation, and radio navigation systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Вестник Донского государственного технического университета
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.